
INFORMS Journal on Computing
Vol. 19, No. 2, Spring 2007, pp. 175–184
issn 1091-9856 �eissn 1526-5528 �07 �1902 �0175

informs ®

doi 10.1287/ijoc.1060.0191
©2007 INFORMS

Solving the Bi-Objective Maximum-Flow
Network-Interdiction Problem

Johannes O. Royset, R. Kevin Wood
Operations Research Department, Naval Postgraduate School, Monterey, California 93943, USA

{joroyset@nps.edu, kwood@nps.edu}

We describe a new algorithm for computing the efficient frontier of the “bi-objective maximum-flow
network-interdiction problem.” In this problem, an “interdictor” seeks to interdict (destroy) a set of arcs in

a capacitated network that are Pareto-optimal with respect to two objectives, minimizing total interdiction cost
and minimizing maximum flow. The algorithm identifies these solutions through a sequence of single-objective
problems solved using Lagrangian relaxation and a specialized branch-and-bound algorithm. The Lagrangian
problems are simply max-flow min-cut problems, while the branch-and-bound procedure partially enumer-
ates s-t cuts. Computational tests reveal the new algorithm to be one to two orders of magnitude faster than
an algorithm that replaces the specialized branch-and-bound algorithm with a standard integer-programming
solver.

Key words : interdiction; maximum flow; Lagrangian relaxation; cut enumeration
History : Accepted by William Cook, Area Editor for Design and Analysis of Algorithms; received September
2005; revised March 2006; accepted May 2006.

1. Introduction
In the deterministic maximum-flow network-inter-
diction problem (MXFI), an “interdictor” wishes to
restrict an “adversary’s” use of a capacitated net-
work. Specifically, the adversary seeks to maximize
flow through the network, while the interdictor
seeks to minimize that maximum flow by inter-
dicting (destroying) arcs using available interdiction
resources (Wood 1993). These resources could be a set
of cruise missiles, a given number of aerial sorties,
etc. MXFI and related problems appear in the areas
of military planning (Whiteman 1999), drug interdic-
tion (Steinrauf 1991), and protecting civil infrastruc-
ture against terrorist attacks (Salmeron et al. 2004).
The model may be classified as a bilevel, target-
selection, or weapons-allocation model; see Matlin
(1970), Bracken and McGill (1974), Bracken et al.
(1977), and Wen and Hsu (1991). A simpler version
of MXFI, the problem of cutting all flow using mini-
mum interdiction resource, provided one of the earli-
est applications of maximum flows and the max-flow
min-cut theorem. The flow was rail traffic from the
Soviet Union into eastern Europe; see Harris and Ross
(1955) and Ford and Fulkerson (1956, 1957).
This paper studies an extension of MXFI, which

we call the “bi-objective maximum-flow network-
interdiction problem” (BMXFI). In BMXFI, the inter-
dictor wishes to identify all Pareto-optimal solutions
for MXFI, i.e., the efficient frontier, with respect to
minimizing post-interdiction maximum flow and

minimizing “total interdiction cost,” i.e., interdiction-
resource expenditure. A bi-objective formulation is
important for a military commander who (i) must
pre-plan for various resource availabilities given the
uncertainty of warfare, or (ii) may wish to consider
cost-to-effectiveness or risk-to-effectiveness tradeoffs
that are difficult to include directly in an interdiction-
planning model.
Steinrauf (1991) and Wood (1993) show that MXFI

can be formulated as an integer program (IP). Thus,
BMXFI can be solved as a set of IPs for MXFI, one
for each plausible level of interdiction resource. But,
MXFI is strongly NP-complete and difficult to solve
in practice (Wood 1993). Hence, solution times could
be unacceptable, especially in a time-constrained, mil-
itary setting. Benders decomposition can be helpful,
because it incorporates easy-to-solve maximum-flow
subproblems, but the computational expense becomes
prohibitive because so many subproblems must be
solved (Cormican 1995). Derbes (1997), Bingol (2001)
and Uygun (2002) devise fast heuristics based on
Lagrangian relaxation, but these cannot guarantee
good solutions. Implicitly, these authors also consider
BMXFI, and construct heuristic solution approaches
based on weighted-sums scalarization of the two
objective functions.
The solution of a sequence of IPs will typically re-

quire that a commercial solver be installed on one
or more local computers, and that up-to-date licenses
be maintained for those computers. But, analysts at

175

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Operations Research
Department,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
176 INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS

a hastily organized military headquarters should not
need to worry about software licenses. Alternatively,
an open-source IP solver could be used, but such
solvers tend to be less efficient than their commercial
counterparts. Consequently, a need exists for a spe-
cialized approach to solving BMXFI.
This paper constructs a procedure for solving

BMXFI based on weighted-sums scalarization of the
objectives, viewed as an application of Lagrangian
relaxation. Lagrangian relaxation partially maps out
the efficient frontier through a sequence of max-
flow min-cut problems. The procedure then fills
in the missing pieces of the frontier with a spe-
cialized branch-and-bound algorithm that enumer-
ates near-minimum-capacity cuts with respect to
Lagrangianized capacities. For simplicity, we phrase
our discussion in terms of “Pareto-optimal solutions”
and “the efficient frontier.” However, for a fixed limit
on total interdiction cost, we typically allow a 1% or
5% optimality gap. Thus, we are actually identifying
“near-Pareto-optimal solutions” (Carlyle et al. 2003),
i.e., the “nearly efficient frontier.”
The next section defines MXFI and BMXFI precisely.

Sections 3 and 4 show how Lagrangian relaxation and
cut enumeration can solve MXFI for specific limits
on total interdiction cost. Section 5 presents the full
solution procedure, Section 6 presents computational
examples, and Section 7 presents conclusions.

2. Problem Formulation
Let G = �N�A� denote a directed graph with node set
N and arc set A⊂N ×N . Two special nodes s �= t are
identified: s is the source node and t is the sink node.
We also define F S�i�= ��i′� j ′� ∈A � i′ = i� and RS�i�=
��j ′� i′� ∈A � i′ = i�.
Each arc k ∈ A has a capacity uk ∈ �+ and interdic-

tion cost rk ∈�+. The interdiction cost is the amount of
some resource necessary to destroy arc k, i.e., reduce
that arc’s capacity to zero. We assume that rk > 0 and
uk > 0 for all k ∈A, since any arc with rk = 0 or uk = 0
may be viewed as “already interdicted” and can be
removed from the problem. We also expect that, in a
military setting, all rk will be small integers. For exam-
ple, they might represent the number of aerial sorties,
one, two or three, say, required to ensure destruction
of a bridge. We note that only simple variations are
required to model an undirected network, partial arc
interdictions, and node interdiction (Wood 1993).
An s-t cut is a partition �Ns�Nt� of N such that

s ∈ Ns and t ∈ Nt . All cuts in this paper are s-t cuts,
so we drop “s-t” hereafter. Given a cut C = �Ns�Nt�,
AC denotes the set of arcs k= �i� j� ∈A such that i ∈Ns

and j ∈Nt . The capacity of C, defined by
∑

k∈AC
uk, pro-

vides an upper bound on the maximum s-t flow in G;
deletion of AC from G disconnects all paths directed

from s to t (e.g., Ahuja et al. 1993, p. 185). A cut C is
minimal if AC is a minimal disconnecting set. We use
� to denote the collection of all minimal cuts in G.
Let xk = 1 if arc k is interdicted, and let xk = 0,

otherwise. Also, let G�x� = �N�A − �k ∈ A � xk = 1��,
and let g�x� denote the maximum s-t flow in G�x�. In
BMXFI, an interdiction plan x ∈ �0�1��A� is dominated if
there exists another plan x′ such that (i) g�x′�≤ g�x�,
(ii)

∑
k∈A rkx′k ≤

∑
k∈A rkxk, and (iii) at least one inequal-

ity is strict. An interdiction plan that is not dominated
is Pareto-optimal. We define BMXFI to be the problem
of identifying all Pareto-optimal interdiction plans.
Let yk denote the flow on arc k ∈ A, and let ya

denote the flow on an artificial “return arc” a= �t� s�
� A. Also, define the standard shorthand notation
“minx∈X�g�x��h�x��” to mean: Find all Pareto-optimal
pairs �g�x��h�x��, for x ∈X, with respect to minimiza-
tion. We can then formulate BMXFI based on the well-
known maximum-flow problem:

BMXFI

min
x∈�0�1��A�

{
g�x��

∑
k∈A

rkxk

}
� (1)

where

g�x�= max
y∈��A��ya

ya (2)

s�t� �iya+
∑

k∈F S�i�
yk−

∑
k∈RS�i�

yk=0 ∀i∈N (3)

0≤yk≤uk�1−xk� ∀k∈A� (4)

with �s = −1, �t = 1, and �i = 0 for all i ∈ N − �s� t�.
Equations (2)–(4) define a standard maximum-flow
problem with “interdiction-modified arc capacities,”
uk�1− xk�, for all k ∈A.
We identify Pareto-optimal interdiction plans by

isolating one objective function and limiting the value
of the other by a constraint. Isolating the max-
imum-flow objective and imposing a limit R on
total interdiction cost, we obtain the single-objective
maximum-flow network-interdiction problem:

MXFI�R�

z∗�R�≡min
x∈X

g�x�� (5)

where X ≡ �x ∈ �0�1��A� �∑k∈A rkxk ≤R�.
MXFI�R� can be converted to a simple, minimizing

IP by reformulating the problem into this essentially
equivalent model (Cormican et al. 1998)

z∗�R�≡min
x∈X
max
y

ya−
∑
k∈A

xkyk (6)

s�t� �3� and 0≤ yk ≤ uk� ∀k ∈A� (7)

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS 177

and by then taking the dual of the inner problem.
(See Wood 1993, also.) An optimal 0-1 solution always
exists, so the resulting IP, after a few simplifications, is

MXFI-IP�R�

z∗�R�=min
����x

∑
k∈A

uk�k

s�t� �i−�j+�k+xk≥0 ∀�i�j�=k∈A (8)∑
k∈A

rkxk ≤R (9)

all variables ∈ �0�1�
�s ≡ 0� �t ≡ 1�

The full efficient frontier can be identified by solv-
ing MXFI-IP�R�, using standard IP software, over a
sufficiently wide range of “R-values.” However, this
approach can be computationally costly, so we present
an alternative approach in Section 5. This approach is
also based on solving MXFI�R�, so we first focus on
this single-objective problem.
Another useful view of MXFI�R� derives from the

max-flow min-cut theorem (Ford and Fulkerson 1956):
Replace the max-flow problem that defines g�x� with
an equivalent min-cut problem. This leads to the
following proposition, in which, without loss of gen-
erality, we have interchanged the order of the two
minimizations.

Proposition 1. MXFI�R� can be solved by finding
C∗ ∈� such that a maximum-capacity, cost-feasible set of
arc interdictions in C∗ leaves as little uninterdicted capac-
ity as possible. That is, MXFI�R� is equivalent to

MXFI-C�R�

z∗�R�=min
C∈�
min
x

∑
k∈AC

uk�1− xk� (10)

s�t�
∑
k∈AC

rkxk ≤R (11)

xk ∈ �0�1� ∀k ∈AC (12)

xk = 0 ∀k ∈A−AC� (13)

Proof. As in the dual to the maximum-flow prob-
lem, any feasible solution to MXFI-IP�R� identifies a
minimal or nonminimal cut C = �Ns�Nt� by setting
�i = 0 for all i ∈Ns , and �i = 1 for all i ∈Nt (e.g., Wood
1993). Constraints (8) are satisfied by setting �k = 1 or
xk = 1 (but not both) for all k ∈AC , and by setting �k =
xk = 0 for all k ∈A−AC . Thus, if we extend � in (10)
to include nonminimal cuts, MXFI-C�R� and MXFI-
IP�R�, and thus MXFI�R�, are equivalent. The validity
of restricting � to minimal cuts is obvious. �

For a given cut C, the inner minimization of MXFI-
C�R� comprises a knapsack problem with, for our pur-
poses, small coefficients rk ∈�+. Thus, if the number

of minimal cuts were small (unlikely in practice),
MXFI�R� would be fairly easy to solve: Enumerate
all minimal cuts (e.g., Shier and Whited 1986), and
solve one knapsack problem for each. If rk = 1 for all
k ∈ A, the problem may appear to be easier, because
the knapsack problem becomes trivial, but it remains
strongly NP-complete (Wood 1993).

3. Lagrangian Relaxation
We approach the solution of MXFI�R� by moving
the interdiction-cost constraint (11) into the objective
function using Lagrangian relaxation (Derbes 1997).
Let denote the Lagrangian multiplier associated
with (11). Then, for any R ∈ �+ and ∈ !0���, we
define

MXFI-LR� �R�

z� �R�≡min
C∈�
min
x

∑
k∈AC

uk�1− xk�

+

(∑
k∈AC

rkxk −R

)
(14)

s�t� xk ∈ �0�1� ∀k ∈AC (15)

xk = 0 ∀k ∈A−AC� (16)

This Lagrangian problem yields a lower bound for
MXFI�R�: For any R ∈ �+ and ∈ !0���, z� �R� ≤
z∗�R�. Note that if a solution � �C� �x� to MXFI-LR� �R�
satisfies

∑
k∈A �C

rk �xk = R, then z� �R� = z∗�R�, that is,
�x is optimal for MXFI�R�.
Let f � � denote the max-flow value in G given

arc capacities u′
k =min�uk� rk�. Observing that (i) the

objective function in MXFI-LR� �R� may also be
written as

∑
k∈AC

�uk + � rk −uk�xk� − R, and (ii) the
problem’s sole constraints are (15) and (16), a simple
solution appears for the inner minimization of MXFI-
LR� �R�: For each k ∈AC , set xk = 1 if rk ≤ uk; other-
wise set xk = 0. Hence,

z� �R� = min
C∈�

(∑
k∈AC

min�uk� rk�− R

)
(17)

= f � �− R� (18)

where the last equality follows from the max-flow
min-cut theorem. Thus, evaluating z� �R� is no
harder than solving a max-flow problem. We do not
use the following fact, but it is interesting to note
that the best Lagrangian bound, max ≥0 z� �R�, can
be computed in polynomial time; see Lawler (1976),
pp. 94–97, Megiddo (1979), and Derbes (1997).
For brevity in the following sections, let the inner

minimizations in MXFI-C�R� and MXFI-LR� �R� be
defined, respectively, as

z∗�R�C�≡min
x

∑
k∈AC

uk�1− xk� (19)

s�t�
∑
k∈AC

rkxk ≤R

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
178 INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS

xk ∈ �0�1� ∀k ∈A
xk = 0 ∀k ∈A−AC�

and
z� �R�C�≡ ∑

k∈AC

min�uk� rk�− R� (20)

4. Cut Enumeration
We will not need to maximize the Lagrangian lower
bound z� �R� for every R when solving BMXFI.
However, it is useful for now to imagine that, for a
given R, we have identified ̂ ≥ 0 such that z� ̂�R�
is “reasonably close” to max ≥0 z� �R�. In the process
of identifying ̂, we will have identified a cut �C that
establishes that bound, i.e., z� ̂�R� = z� ̂�R� �C�, and
will have found a feasible solution �x to MXFI�R� that
defines an upper bound z̄�R� ≥ z∗�R�. In particular,
having identified �C, we can set z̄�R�= z∗�R� �C�.
Now, if z̄�R�− z� ̂�R�≤ # for some prespecified tol-

erance #≥ 0, we have identified an #-optimal solution
for MXFI�R�. If not, we can apply Theorem 1, below,
to find one. We first establish two lemmas to simplify
the theorem’s proof.

Lemma 1. z� �R�C� ≤ z∗�R�C� for any ∈ !0���,
R ∈�+, and C ∈�.

Proof. This follows because (i) z∗�R�C� is the opti-
mal objective value for MXFI�R� defined on a network
that consists only of the arcs AC connected in parallel
from s to t, and (ii) z� �R�C� defines a Lagrangian
lower bound on the same problem. �

Lemma 2. Let ∈ !0��� and R ∈�+. If z̄�R� is a con-
stant such that z̄�R� ≥ z∗�R�, then the outer minimiza-
tion in MXFI-C�R� can be restricted to C ∈ � such that
z� �R�C� ≤ z̄�R� without changing that problem’s opti-
mal value.

Proof. Suppose that �C ∈� is a solution of the outer
minimization in MXFI-C�R� with z� �R� �C� > z̄�R�.
Then, by Lemma 1,

z̄�R� < z� �R� �C�≤ z∗�R� �C�= z∗�R�� (21)

which is a contradiction. �

Theorem 1. Given optimality tolerance # ≥ 0, ∈
!0���, and R ∈ �+, suppose that �C ∈ � yields upper
bound z̄�R�= z∗�R� �C�. Also, define

z∗#�R�= min
C∈��z̄� �R�#�

z∗�R�C�� (22)

where ��z̄� �R�#� ≡ �C ∈ � � z� �R�C� ≤ z̄�R�− #� ∪
� �C�. Then, z∗#�R�− z∗�R� ≤ #, i.e., z∗#�R� is an #-optimal
objective value for MXFI�R�.

Proof. If z∗�R� ≥ z̄�R� − # = z∗�R� �C� − #, then �C
has already yielded an #-optimal solution and the

theorem is valid. Suppose not, i.e., suppose z∗�R� <
z∗�R� �C�−#. Then, z∗�R� �C�−# is a valid upper bound
on z∗�R� and thus Lemma 2, with z̄�R� replaced by
z∗�R� �C� − #, implies that the minimization in (22)
yields z∗�R�. �

Corollary 1. If �C is a minimizer of (22), then every
minimizer x∗�C of (19), with C replaced by �C, is an #-optimal
interdiction plan for MXFI�R�. �

When the Lagrangian procedure of the previous
section leaves z̄�R� − z� ̂�R� > #, Theorem 1 and
Corollary 1 guide us to a solution of MXFI�R�:
Using = ̂ that approximately maximizes z� �R�,
(i) enumerate all cuts C having z� ̂�R�C�≤ z̄�R�− #,
(ii) solve a knapsack problem for each C in order
to minimize uninterdicted capacity, i.e., compute
z∗�R�C�, and (iii) save the solution with the least
uninterdicted capacity. Naturally, whenever a better
solution is found, the upper bound can be updated,
and, in effect then, we may apply Theorem 1 multi-
ple times while searching for an #-optimal solution.
(Thus, beginning with a solution that is not #-optimal,
and a correspondingly weak upper bound, does not
imply that we must then seek an optimal solution,
which the theorem might seem to suggest.)
We implicitly enumerate all necessary cuts using

the tree-search algorithm in Balcioglu and Wood
(2003). That algorithm has this key feature: Given that
each arc k ∈ A has capacity u′

k (u
′
k =min�uk� rk�, in

our case), then each node in the search tree corre-
sponds to a unique cut C such that∑

k∈C
u′
k ≤

∑
k∈ �C

u′
k (23)

for every “child” cut �C of C. Our use of this algorithm
defines a depth-first branch-and-bound algorithm.
In contrast to LP-based (linear-programming-based)
branch and bound that reoptimizes the lower bound
for each child, our algorithm recomputes a valid
bound for each child, but does not reoptimize with
respect to : We have not found that reoptimiza-
tion improves computation times, in practice. Enu-
meration strategies other than depth first could be
employed, but this strategy is easy to program and
works well in practice.
We outline the cut-enumeration algorithm next,

using �h� to denote the smallest integer at least as
large as the real number h. This ceiling function ap-
pears because, given our integral data, a nonintegral
lower bound can always be rounded up to the nearest
integer.

Procedure Enumerate. /∗ Solves MXFI�R� for
specified R ∈�+. ∗/

Input Data. Data for MXFI�R�, feasible solution �x�R�
and corresponding upper bound z̄�R�, parameters
 ̂≥ 0 and #≥ 0, and global lower bound �z� ̂�R��.

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS 179

Output. An #-optimal interdiction plan �x�R� for
MXFI�R�.
0. Set arc capacities u′

k ←min�uk� ̂rk� for all k ∈A;
1. Begin the tree-search, cut-enumeration algorithm

(Balcioglu and Wood 2003);
2. For each cut C encountered,
(a) If z̄�R� − �z� ̂�R�C�� = z̄�R� − ��∑k∈AC

u′
k −

 ̂R�� ≤ #, go to Next;
(b) Compute z∗�R�C� and its optimizer x∗C ;
(c) If z∗�R�C� < z̄�R�, set z̄�R� ← z∗�R�C� and

�x�R�← x∗C ;
(d) If z̄�R�−�z� ̂�R�C�� ≤ # go to Next;
(e) For each child cut �C of C,
(i) Continue the tree search recursively at

Step 2 with C← �C;
(ii) Upon returning from exploring �C, if z̄�R�−

�z� ̂�R�C�� ≤ # go to Next;
/∗ The above check may be useful if z̄�R� has

improved. ∗/
(f) Next: If C is the initial cut in the tree, or if

z̄�R�−�z� ̂�R�� ≤ #, halt the enumeration and Return
�x�R� and z̄�R�;

(g) Backtrack from C.

We note that Procedure Enumerate may actually
identify some nonminimal cuts that must be searched
recursively, but which are not candidates for yield-
ing optimal solutions. Our implementation adjusts for
this, but we ignore the issue above for simplicity.

5. A Complete Algorithm
We now return to BMXFI. The full efficient frontier
for BMXFI can be explored by solving MXFI�R� for
all possible R-values, for example by repeated appli-
cation of Procedure Enumerate. We construct a more
efficient approach, however, which exploits the rela-
tionship between MXFI�R� and MXFI�R′�, for R close
to R′.

5.1. Overview
Using the arguments in the proof of Proposition 1, we
find that BMXFI is equivalent to

BMXFI-C

min
C∈�
min
x

{ ∑
k∈AC

uk�1− xk��
∑
k∈AC

rkxk

}
(24)

s�t� xk ∈ �0�1� ∀k ∈AC (25)

xk = 0 ∀k ∈A−AC� (26)

In view of this and ignoring the constant R, we
see that MXFI-LR� �R� is the reduction of BMXFI-
C by means of weighted-sums scalarization of its
objectives, using (unscaled) weights 1 and . Hence,
the evaluation of f � � (see (18)) for a range of -values

is equivalent to solving weighted-sums scalarizations
using various weights.
While we cannot expect to identify the full efficient

frontier this way (Climaco et al. 1997), we hope that
a substantial portion can be. Thus, for various values
of , we perform the following steps:
1. Using a maximum-flow algorithm, compute

f � �←min
C∈�

∑
k∈AC

min�uk� rk� and

�C← argmin
C∈�

∑
k∈AC

min�uk� rk�%

2. Set �xk ← 1 whenever uk ≥ rk and k ∈A �C , and set�xk ← 0 otherwise;
3. Set R← ∑

k∈A rk �xk, z∗�R�←
∑

k∈A uk�1− �xk�, and
�x�R�←�x.
The solution �x�R� is optimal for MXFI�R� since∑
k∈A rk �xk�R�=R. For problems MXFI�R� not immedi-
ately solved using these steps, we have a head start
because, for any R, z� �R�= f � �− R≤ z∗�R� for all
values of that the procedure examines.
Let Rmax be the smallest R such that z∗�R�= 0, i.e.,

the minimum amount of interdiction resource that can
force the adversary’s maximum flow to 0. The cor-
responding interdiction plan is found by setting =
mink∈A uk/rk in the previously described procedure.
Also, for any >maxk∈A uk/rk, the solution obtained
corresponds to R= 0. Thus, it suffices to examine val-
ues of in the range !mink∈A uk/rk�'+maxk∈A uk/rk(
for some '> 0.
Since f � � is a piecewise-linear function with no

more than Rmax break points, a procedure akin to
Benders decomposition could map out z� �R� com-
pletely by solving at most Rmax + 1 max-flow prob-
lems. The Benders master problem would be simple
enough to solve by inspection. However, the sequence
of max-flow min-cut problems would involve widely
varying arc capacities and would be harder to solve
efficiently than one in which arc capacities are non-
decreasing. Consequently, we opt for mapping out
the function f � � approximately, starting with a small
value for and increasing it according to an empiri-
cally derived rule.
We motivate that rule with a network consisting of

a set of parallel arcs of the form k = �s� t�, all with
unique ratios uk/rk. In this case, f � � breaks only at
points where some arc capacity min�uk� rk� switches
from rk to uk, i.e., at = uk/rk. Therefore, we can map
out the function f � �, and thus the functions z� �R�
for all R, by evaluating the maximum flow, or mini-
mum cut capacity, at only these values of .
Naturally, the situation is more complex for a gen-

eral network. But, for simplicity, let us continue to
assume that the ratios uk/rk are unique. Suppose
some ′ > 0 has been defined, arc capacities u′

k =

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
180 INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS

min�uk� ′rk� have been computed, and a minimum
cut C is identified such that u′

k = uk for at least one
k ∈ AC . Without loss of generality, assume ′rk �= uk
for any k ∈ A. Now, our example implies that f � �
must break somewhere on the interval � ′� ′′(where
 ′′ = mink∈AC

�uk/rk � uk/rk > ′�, i.e., between its cur-
rent value and the value where the function would
break if C were the only cut in the network. Since
G typically contains a huge number of cuts, some
other cut may become “the minimum cut” before
reaches ′′. Thus, increasing all the way to ′′ tends
to overshoot the next breakpoint. This observation,
along with empirical testing, leads us to adopt the
following rule for computing the next :

 =max��1−)� ′ +) ′′� ′ +'� (27)

for some empirically determined '> 0 and) ∈ �0�1(.
We find that ' = 0�1mink∈Amin�uk� rk�, and) = 0�25
work well in general.

5.2. Algorithm Interdict
Based on the discussion and outline above, we now
state a complete algorithm for BMXFI:

Algorithm Interdict. /∗ Solves BMXFI. ∗/
Parameters. Absolute tolerance #≥ 0 and algorithm
controls) ∈ �0�1(and '> 0.

Input Data. Network G= �N�A�, with interdiction
costs rk ∈�+ and arc capacities uk ∈�+ for all
k ∈A. Source node s ∈N and sink node t ∈N .

Output. An optimal or #-optimal solution �x�R� to
MXFI�R� for each R ∈ �0�1� � � � �Rmax�.
0. Set ←mink∈A�uk/rk� and *←�;
/∗ * represents the set of R-values with known

solutions. ∗/
1. While ≤maxk∈A�uk/rk�+'
/∗ Step 1 roughly maps out f � � and identifies, we

hope, a large number of solutions �x�R� for different
R-values. ∗/

(a) Solve the maximum flow problem on G using
arc capacities u′

k = min�uk� rk�, and find a corre-
sponding minimum-capacity cut C;

(b) Set �xk ← 1 for all k ∈ AC such that uk ≥ rk,
and set �xk ← 0 otherwise;

(c) Set R←∑
k∈A rk �xk;

(d) If R�*, /∗ A new solution has been found. ∗/
set * ← * ∪ �R�, �R� ← , z∗�R� ← ∑

k∈A uk�1 − �xk�,
and �x�R�←�x;

(e) If =mink∈A�uk/rk�, set Rmax←R;
(f) If min�uk� rk� = uk for all k ∈ AC , break

from “While” loop; Else, set ← max��1 −)� +
)mink∈AC

�uk/rk � uk/rk ≥ �� +'�; /∗ See (27) ∗/
2. For each R ∈ �0�1� � � � �Rmax�−*
/∗ Step 2 refines lower bounds for R-values whose

#-optimal solutions remain unidentified. It may also
identify some new, absolutely optimal solutions. ∗/

(a) Select R′�R′′ ∈*, R′ <R<R′′, to bracket R as
tightly as possible;

(b) Set �R�← argmax ∈� �R′�� �R′′�� z� �R�;
(c) Compute a new -value, ′′′ ← �z∗�R′� −

z∗�R′′��/�R′′ −R′�;
/∗ ′′′ estimates argmax ≥0 z� �R� using subgra-

dients of z� �R�. ∗/
(d) If ′′′ � � �R′′�� �R′�� continue the “For” loop;
/∗ The “continue” means that ′′′ cannot yield an

improved lower bound, so just proceed to the next
R-value. ∗/

(e) Compute �C and �x by performing Steps 1(a)–
(b), with = ′′′, and set z� ′′′�R�← z� ′′′�R� �C�;

(f) Set �R�← argmax ∈� �R�� ′′′� z� �R�;
(g) If R=∑

k∈A rk �xk,
/∗ A new optimal solution has been found. ∗/

set *←*∪ �R�, z∗�R�← z� �R��R�, and �x�R�←�x;
3. For each R ∈ �0�1� � � � �Rmax� − * in increasing

order /∗ Step 3 identifies #-optimal solutions for
R-values that have eluded exact solution in Steps 1
and 2. Depending on #, it may or may not be neces-
sary to actually call the cut-enumeration (branch-and-
bound) procedure. ∗/

(a) Set initial values z̄�R� ← z̄�R − 1�, �x�R� ←
�x�R− 1�, ̂← �R�; /∗ z� ̂�R� is now also defined ∗/

(b) If z̄�R� − �z� ̂�R�� ≤ #, then continue the
“For” loop;

(c) Call Procedure Enumerate with inputs z̄�R�,
�x�R�, ̂, �z� ̂�R��, to return #-optimal �x�R�;
4. /∗ Output solution. ∗/
(a) For all R ∈*, Print(R, “Optimal solution is,”

�x�R�);
(b) For all R ∈ �0�1� � � � �Rmax� − *, Print(R,

“#-optimal solution is,” �x�R�).
Step 2 of Algorithm Interdict estimates the best

lower bound max ≥0 z� �R� for z∗�R� and the corre-
sponding maximizer �R� by using z∗�R′�, z∗�R′′� and
a slope estimate of z� �R� with respect to , where
R′ and R′′ bracket R. In particular, Step 2(c) uses
the fact, from (18), that z� �R� ≤ z� �+� + �+ − R�
for any + ∈ �+ and ≥ 0, as well as the fact that
z� �+��+�= z∗�+� for +=R′�R′′. Step 2 may not max-
imize the lower bound precisely, but optimizing the
bound has not proved computationally worthwhile.
We also note that Steps 1 and 2 are actually inte-
grated in the algorithm’s implementation, and have
been separated above for the sake of clarity.
Step 3(a) in Algorithm Interdict exploits the fact

that an upper bound on z∗�R′� is also an upper bound
on z∗�R� for R > R′. Hence, the initial upper bound
for each R is computed without significant computa-
tional cost.
Since Rmax is finite and the network G has a finite

number of cuts, Algorithm Interdict solves BMXFI in
finite computing time. Given that the number of cuts

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS 181

can be exponential in the size of G, the algorithm’s
worst-case complexity is exponential, however.

5.3. Enhancements to the Algorithm
Our implementation of Algorithm Interdict makes
two modifications to the basic algorithm to improve
computational efficiency. First, maximum flows are
calculated for many similar problems, so we exploit
“warm starts.” We use a variant of the shortest-
augmenting-path algorithm of Edmonds and Karp
(1972) to solve maximum-flow problems, and an
inherent feature of such algorithms is that the maxi-
mum flow for a problem with arc capacities u�1�k pro-
vides a feasible initial flow, i.e., a warm start, for a
problem with capacities u�2�k ≥ u

�1�
k for all k ∈ A. We

make use of that feature in Step 1 of the algorithm
since arc capacities never decrease as increases. We
also make use of it in Step 2 of Procedure Enumerate,
where the next cut to consider is determined through
a warm-started max-flow calculation (Balcioglu and
Wood 2003).
The second computational improvement comes

from perturbing the ratios uk/rk so that uk/rk �= ul/rl
for all k� l ∈ A, k �= l. Derbes (1997) first notes the
benefits of this technique; see also Bingol (2001). We
implement perturbations by multiplying every uk by
a large positive integer (in practice, 6× 105), and by
then adding a small positive integer to uk when-
ever uk/rk = ul/rl for some l ∈ A, l �= k. The pertur-
bations are several orders of magnitude smaller than
the smallest arc capacity and hence do not change
a problem’s solutions. This technique typically cre-
ates more linear segments in z� �R� as a function
of . Hence, it is more likely that z� �R� is constant
for in some interval. Because any in this interval
yields z� �R�= z∗�R�, this technique results in more
instances of MXFI�R� being solved optimally in Step 2
of the Algorithm.

6. Computational Results
This section examines the efficiency of Algorithm
Interdict for solving BMXFI applied to artificial and
real-world network data. The algorithm is coded in
Java 1.4.2 (Sun Microsystems 2004), and run on a
3.0 GHz Pentium IV laptop computer with one giga-
byte of RAM.
We compare our algorithm’s run times to the times

required by a hybrid algorithm that looks just like
Algorithm Interdict except that a commercial IP solver
is called instead of Procedure Enumerate to resolve
instances of MXFI-IP�R� for “problematic” values
of R. We use CPLEX Version 9.1 (ILOG 2005) as the
solver, integrated with our Java code using ILOG
Concert Technology (ILOG 2006). We have tested a
variety of CPLEX options, and find that it is best

to favor “branching up” and to apply mixed-integer
rounding cuts aggressively.
The tables of results also report the average number

of branch-and-bound nodes, computed over all R ∈
�0�1� � � � �Rmax�, for both algorithms. When CPLEX
solves an IP without any enumeration, it records zero
nodes enumerated. For consistency, we also record
zero nodes when Algorithm Interdict does not invoke
Procedure Enumerate for a given R.
The CPLEX version of MXFI-IP�R� exploits z̄�R−1�

just as Procedure Enumerate does, and incorporates
two enhancements. The first defines an auxiliary inte-
ger variable �x and an auxiliary “branching constraint”∑

k∈A xk = �x (Appleget and Wood 2000). When not all
rk = 1, setting the branching priority highest for �x,
(and second highest for the xk, and lowest for the
other variables) can substantially reduce enumeration.
Roughly speaking, this causes the solver to branch on
the number of interdictions before branching on indi-
vidual interdictions. The second enhancement incor-
porates warm starts for the sequence of closely related
LP relaxations that CPLEX must solve. We believe
that these enhancements to the IP-based methodol-
ogy mean that the solution times reported for the
hybrid algorithm present a substantial challenge to
Algorithm Interdict.
Figure 1 illustrates an instance from the first class

of test networks, rectangular grid networks. Letting
n1 and n2 denote the number of rows and columns
of nodes in these networks, �N � = n1n2 + 2 and �A� =
2n1 + 2��n2 − 1�n1 + �n1 − 1�n2�. Arcs connecting the
source s and the sink t all have effectively infinite
capacities and are invulnerable to interdiction. All
other arcs k have capacities uk that are drawn ran-
domly and independently from the discrete uniform
distribution on !1�49(.
We consider three variants of the grid networks, all

having common topology but with different numeri-
cal data. For variant A1, interdiction costs are rk = 1
for all k ∈ A. Interdiction costs are randomly gener-
ated for variants A2 and A3, as specified in Table 1.
In this table, kW , kE , kS , and kN represent west-
bound, eastbound, southbound, and northbound arcs,
respectively. Randomly generated data are statisti-
cally independent. Small integers should adequately

s t

Figure 1 Rectangular Grid Network with n1 = 3 and n2 = 4

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
182 INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS

Table 1 Probabilities for Pseudo-Random Generation
of Interdictions Costs in Grid-Network Variants
A1, A2, and A3

Network A1 A2 A3

Prob�rkW = 1� 1 1/4 1/2
Prob�rkW = 2� 0 3/4 1/2
Prob�rkW = 3� 0 0 0

Prob�rkE = 1� 1 0 0
Prob�rkE = 2� 0 1 1/2
Prob�rkE = 3� 0 0 1/2

Prob�rkS = 1� 1 1/4 1/2
Prob�rkS = 2� 0 3/4 1/2
Prob�rkS = 3� 0 0 0

Prob�rkN = 1� 1 1/4 1/2
Prob�rkN = 2� 0 3/4 1/2
Prob�rkN = 3� 0 0 0

model interdiction costs in military applications, so
rk ∈ �1�2�3� in all problem instances. Note that Algo-
rithm Interdict can be simplified when all rk = 1
because the knapsack problem in Step 2(b) of Proce-
dure Enumerate becomes trivial. We have not imple-
mented code to take advantage of this special case,
however.
Tables 2, 3, and 4 display solution times and aver-

age number of nodes in the enumeration trees for
both algorithms, when using relative optimality tol-
erances of 1% and 5%. For Algorithm Interdict, this
means that # is evaluated as 0�01�z� �R��R�� or
0�05�z� �R��R��, respectively, instead of as a fixed
value.
These tables indicate that Algorithm Interdict runs

between one and two orders of magnitude faster than
the hybrid algorithm (on average, 24, 42, and 119
times faster on the grid networks A1, A2, and A3,
respectively). We note that Algorithm Interdict solves
faster than reported for certain problems when using
other schemes for determining in Step 1(f) of the
Algorithm. However, we have not optimized algorith-
mic performance by specializing the code for particu-
lar problems. Figure 2 illustrates the trade-off between

Table 2 Total Time to Solve BMXFI, and Average Number of Nodes in
Enumeration Trees for Grid Networks A1

Network A1

Value Tol. (%) 10× 20 20× 40 30× 60 40× 80
Hybrid alg. Tot. time (sec.) 1 1.2 4.4 59�7 317�8

Tot. time (sec.) 5 1.2 4.4 59�7 319�8
Avg. nodes 1 0.5 0.0 0�1 0�0
Avg. nodes 5 0.5 0.0 0�1 0�0

Alg. interdict Tot. time (sec.) 1 0.1 0.3 2�6 6�4
Tot. time (sec.) 5 0.1 0.7 2�7 6�5
Avg. nodes 1 6.1 0.2 0�4 7�4
Avg. nodes 5 3.1 0.2 0�4 3�4

Table 3 Total Time to Solve BMXFI, and Average Number of Nodes in
Enumeration Trees for Grid Networks A2

Network A2

Value Tol. (%) 10× 20 20× 40 30× 60 40× 80
Hybrid alg. Tot. time (sec.) 1 1�2 3�4 459�8 1�619�6

Tot. time (sec.) 5 1�1 3�4 428�8 1�053�0
Avg. nodes 1 0�1 0�3 0�5 1�1
Avg. nodes 5 0�1 0�3 0�5 1�1

Alg. interdict Tot. time (sec.) 1 0�1 0�7 5�9 23�3
Tot. time (sec.) 5 0�1 0�7 5�6 13�3
Avg. nodes 1 13�5 26�6 56�6 200�6
Avg. nodes 5 10�2 5�6 20�2 31�7

maximum flow and total interdiction cost for the case
A3 �20 × 40�. The lack of convexity in this figure
implies that the efficient frontier cannot be identified
though weighted-sums scalarization alone (Climaco
et al. 1997).
The second collection of test problems uses net-

works derived from the highways and roads in
Maryland, Virginia, and Washington, D.C. (Carlyle
and Wood 2005). These data include all interstate,
state, and county roads in these areas. Using vari-
ous arc capacities and interdiction costs, we construct
14 different network problems denoted B1–B7 and
C1–C7. Each problem contains multiple sources and
sinks that are connected to a super-source and super-
sink, respectively, using invulnerable, infinite-capacity
arcs.
The “road-B networks” incorporate 9,876 directed

road segments, which are modeled as arcs in a di-
rected graph with 3,670 nodes. These segments rep-
resent all roads with speed limits of 30 miles per
hour or higher. 16 nodes along the region’s north-
ern border constitute source nodes, and 14 nodes on
the southern border constitute sink nodes. Includ-
ing auxiliary nodes and arcs, the network comprises
3,672 nodes and 9,906 arcs. Interdiction costs and arc
capacities are generated as specified by Table 5, where
Prob�uk =0� is the probability that uk takes on a value
in �1�2� � � � �49�. Randomly generated data are statis-
tically independent. Deterministic problem instances

Table 4 Total Time to Solve BMXFI, and Average Number of Nodes in
Enumeration Trees for Grid Networks A3

Network A3

Value Tol. (%) 10× 20 20× 40 30× 60 40× 80
Hybrid alg. Tot. time (sec.) 1 2�5 196�5 1�556�5 2�257�0

Tot. time (sec.) 5 2�5 177�7 651�1 1�219�7
Avg. nodes 1 0�6 1�4 2�0 0�4
Avg. nodes 5 0�6 1�0 0�7 0�6

Alg. interdict Tot. time (sec.) 1 0�1 0�9 7�1 28�3
Tot. time (sec.) 5 0�1 0�9 5�4 18�7
Avg. nodes 1 26�8 100�1 86�6 92�1
Avg. nodes 5 19�3 60�0 25�7 5�9

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS 183

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

Total interdiction cost

M
ax

im
um

 fl
ow

Figure 2 Solving BMXFI for Case A3 �20×40�: The Trade-Off Between
Maximum Flow and Total Interdiction Cost

(“Deter.”) have uk = sk/5 for all k, where sk is the
speed limit in miles per hour for road segment k, sk ∈
�30�45�50�55�65�. Also, for B7 and C7, “Deter.” indi-
cates that rk = 1 when sk = 30, and otherwise rk = 2.
The “road-C networks” have the same topology as

the B-networks, but with different sources and sinks.
152 nodes in the region’s center constitute source
nodes, and 35 nodes scattered about the periphery
constitute sink nodes. The network comprises 3,672
nodes and 10,031 arcs in total. Interdiction costs are
generated as specified in Table 5.
A node i ∈ N in the road networks is said to be

a nonintersection if F S�i� = ��i� j1�� �i� j2�� and RS�i� =
��j1� i�� �j2� i��. About 40% of the nodes in the road
networks are nonintersections because of the level of
detail represented: Nonintersections do actually rep-
resent intersections, but at least one intersecting road
segment has been deleted because its speed limit
lies below the cutoff of 30 miles per hour. Clearly, a
nonintersection can be deleted and replaced by two
arcs, �j1� j2� and �j2� j1�, with appropriate adjustments
to the numerical data. Both algorithms use the pre-
processed data. (Solution times reported exclude the
pre-processing time, but none exceeds 0.1 seconds.)
For the cases in which arc capacities uk are defined

as one fifth of the speed limit (see Table 5), Algo-
rithm Interdict adds a test to ensure that the lower

Table 5 Parameters for Generating Road-Network Capacities and
Interdiction Costs

Network B1, C1 B2, C2 B3, C3 B4, C4 B5, C5 B6, C6 B7, C7

Prob�rk = 1� 1 1/2 1/3 1 1/2 1/3
Prob�rk = 2� 0 1/2 1/3 0 1/2 1/3 Deter.
Prob�rk = 3� 0 0 1/3 0 0 1/3

Prob�uk = �� 1/49 1/49 1/49 Deter. Deter. Deter. Deter.

Table 6 Total Time to Solve BMXFI, and Number of Nodes in
Enumeration Trees for Road-B Networks

Network

Value Tol. (%) B1 B2 B3 B4 B5 B6 B7

Hybrid alg. Tot. time (sec.) 1 6.9 12�0 8.4 6.9 23�2 13�3 14�6
Tot. time (sec.) 5 6.9 12�0 8.3 6.8 23�1 13�1 14�4
Avg. nodes 1 0.0 0�0 0.0 0.0 0�0 0�0 0�0
Avg. nodes 5 0.0 0�0 0.0 0.0 0�0 0�0 0�0

Alg. interdict Tot. time (sec.) 1 0.2 0�3 0.3 0.4 0�5 0�6 1�2
Tot. time (sec.) 5 0.2 0�3 0.3 0.4 0�4 0�6 0�8
Avg. nodes 1 0.0 0�1 0.2 0.1 0�3 24�1 55�6
Avg. nodes 5 0.0 0�1 0.2 0.1 0�3 24�1 0�5

Table 7 Total Time to Solve BMXFI, and Average Number of Nodes in
Enumeration Trees for Road-C Networks

Network

Value Tol. (%) C1 C2 C3 C4 C5 C6 C7

Hybrid alg. Tot. time (sec.) 1 9.5 13�4 14�2 7.9 9.9 14�9 19�8
Tot. time (sec.) 5 9.4 13�2 14�1 7.9 9.8 14�7 18�2
Avg. nodes 1 0.0 0�2 0�0 0.0 0.0 0�0 0�0
Avg. nodes 5 0.0 0�2 0�0 0.0 0.0 0�0 0�0

Alg. interdict Tot. time (sec.) 1 0.5 0�7 8�5 0.5 0.5 2�9 5�4
Tot. time (sec.) 5 0.5 0�7 0�7 0.5 0.5 2�4 0�9
Avg. nodes 1 0.1 33�8 958�6 0.1 0.5 278�7 389�5
Avg. nodes 5 0.1 33�8 2�0 0.1 0.2 220�5 0�3

bound does not take on a value of flow that cannot be
maximum, i.e., z� �R��R� � �1�2�3�4�5�7�8�14�. For
instance, a nominal lower bound of 4 increases to 6.
Tables 6 and 7 display solution times for both algo-

rithms applied to the road-B and road-C networks,
respectively. On average, Algorithm Interdict remains
an order of magnitude faster than the hybrid algo-
rithm (30 and 15 times faster on the B and C networks,
respectively). However, the road-C problems include
three cases, C3, C6, and C7, with relatively small
speed-ups at the 1%-tolerance level. The hybrid algo-
rithm appears only modestly slower in these cases
because Algorithm Interdict requires substantial enu-
meration, while CPLEX requires almost none.
On average, Algorithm Interdict requires more enu-

meration than does the hybrid algorithm, no doubt
because the Lagrangian lower bounds are weaker
than CPLEX’s cut-enhanced, LP-based bounds. An
increased tolerance can significantly reduce the num-
ber of branch-and-bound nodes for Algorithm Inter-
dict, while the number of nodes for CPLEX stays
small, almost independent of the optimality tolerance.

7. Conclusions
This paper describes a new procedure, “Algorithm
Interdict,” for solving the bi-objective maximum-flow
interdiction problem. The algorithm first identifies a
large portion of the efficient frontier using weighted-
sums scalarization of the two objectives to be min-
imized, maximum flow and total interdiction cost.

Royset and Wood: Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem
184 INFORMS Journal on Computing 19(2), pp. 175–184, © 2007 INFORMS

We interpret this through the theory of Lagrangian
relaxation. A specialized branch-and-bound proce-
dure, involving partial cut enumeration, then identi-
fies any missing parts of that frontier.
We have compared Algorithm Interdict to a hybrid

algorithm in computational tests; the hybrid algo-
rithm calls a standard integer-programming solver
instead of the specialized branch-and-bound proce-
dure, when the Lagrangian solution from Algorithm
Interdict is not #-optimal. With rare exceptions, our
algorithm is one to two orders of magnitude faster
than the hybrid algorithm; on average it is 40 times
faster. Its efficiency results from the fact that bounds
and s-t cuts are computed via the solutions of inter-
related, and easily solved maximum-flow problems.
The algorithm may require more enumeration than
does linear-programming-based branch and bound,
but that enumeration is highly efficient. Algorithm
Interdict also provides the benefit of not requiring a
licensed solver.
We might attempt to reduce enumeration by im-

proving the Lagrangian lower bound. Indeed, it is
clear that the standard solver achieves better bounds
through the use of integer cutting planes. If such cut-
ting planes could be identified and Lagrangianized
with appropriate multipliers, this could improve the
lower bound. Wood (1993) identifies some problem-
specific cutting planes that could be explored for this
purpose.

Acknowledgments
The authors thank an anonymous reviewer for valuable
comments and suggestions. The first author thanks the
National Research Council for research support. The sec-
ond author thanks the Office of Naval Research, the Air
Force Office of Scientific Research, the Naval Postgradu-
ate School, and the University of Auckland for research
support. Both authors thank Gerald Brown for provid-
ing road data for computational examples and Matthew
Carlyle, Javier Salmeron, and Keith Olson for valuable
comments.

References
Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows.

Prentice-Hall, Englewood Cliffs, NJ.
Appleget, J., K. Wood. 2000. Explicit-constraint branching for solv-

ing mixed integer programs. M. Laguna, J. L. González-
Velarde, eds. Computing Tools for Modeling, Optimization and
Simulation. Kluwer Academic Publishers, Boston, MA, 245–262.

Balcioglu, A., R. K. Wood. 2003. Enumerating near-min s-t cuts.
D. L. Woodruff, ed. Network Interdiction and Stochastic Integer
Programming. Kluwer Academic Publishers, Boston, 21–49.

Bingol, L. 2001. A Lagrangian heuristic for solving a network inter-
diction problem. Master’s thesis, Operations Research Depart-
ment, Naval Postgraduate School, Monterey, CA.

Bracken, J., J. T. McGill. 1974. Defense applications of mathematical
programs with optimization problems in the constraints. Oper.
Res. 22 1086–1096.

Bracken, J., J. E. Falk, F. A. Miercort. 1977. A strategic weapons
exchange allocation model. Oper. Res. 25 968–976.

Carlyle, W. M., R. K. Wood. 2005. Near-shortest and k-shortest sim-
ple paths. Networks 46 98–109.

Carlyle, W. M., J. W. Fowler, E. S. Gel, B. Kim. 2003. Quantitative
comparison of approximate solution sets for bi-criteria opti-
mization problems. Decision Sci. 34 63–82.

Climaco, J., C. Ferreira, M. Captivo. 1997. Multicriteria integer
programming: An overview of the different algorithmic ap-
proaches. J. Climaco, ed.Multicriteria Analysis. Springer, Berlin,
Germany, 248–258.

Cormican, K. J. 1995. Computational methods for deterministic
and stochastic network interdiction problems. Master’s thesis,
Operations Research Department, Naval Postgraduate School,
Monterey, CA.

Cormican, K. J., D. P. Morton, R. K. Wood. 1998. Stochastic network
interdiction. Oper. Res. 46 184–197.

Derbes, H. D. 1997. Efficiently interdicting a time-expanded
transshipment network. Master’s thesis, Operations Research
Department, Naval Postgraduate School, Monterey, CA.

Edmonds, J., R. M. Karp. 1972. Theoretical improvements in algo-
rithm efficiency for network flow problems. J. ACM 19 248–264.

Ford, L. R., D. R. Fulkerson. 1956. Maximal flow through a network.
Canadian J. Math. 8 399–404.

Ford, L. R., D. R. Fulkerson. 1957. A simple algorithm for finding
maximal network flows and an application to the Hitchcock
problem. Canadian J. Math. 9 210–218.

Harris, T. E., F. S. Ross. 1955. Fundamentals of a method for evalu-
ating rail net capacities. Research Memorandum RM-1573, The
Rand Corp., Santa Monica, CA.

ILOG. 2005. ILOG CPLEX 9.1, User’s Manual. ILOG, S.A., Gentilly
Cedex, France.

ILOG. 2006. ILOG Concert Technology. ILOG, S.A., Gentilly Cedex,
France, http://www.ilog.com/products/optimization/tech/
concert.cfm.

Lawler, E. L. 1976. Combinatorial Optimization, Networks and
Matroids. Holt, Rinehart and Winston, New York.

Matlin, S. 1970. A review of the literature on the missile allocation
problem. Oper. Res. 17 334–373.

Megiddo, N. 1979. Combinatorial optimization with rational objec-
tive functions. Math. Oper. Res. 4 414–424.

Salmeron, J., K. Wood, R. Baldick. 2004. Analysis of electric grid
security under terrorist threat. IEEE Trans. Power Systems 19-2
905–912.

Shier, D. R., D. E. Whited. 1986. Iterative algorithms for generating
minimal cutsets in directed graphs. Networks 16 133–147.

Steinrauf, R. L. 1991. Network interdiction models. Master’s thesis,
Operations Research Department, Naval Postgraduate School,
Monterey, CA.

Sun Microsystems. 2004. Java 1.4.2. Documentation. Sun Microsys-
tems, Santa Clara, CA, http://www.java.sun.com.

Uygun, A. 2002. Network interdiction by Lagrangian relaxation
and branch-and-bound. Master’s thesis, Operations Research
Department, Naval Postgraduate School, Monterey, CA.

Wen, U., S. Hsu. 1991. Linear bi-level programming problems—A
review. J. Oper. Res. Soc. 42 125–133.

Whiteman, P. S. 1999. Improving single strike effectiveness for net-
work interdiction. Military Oper. Res. 4 15–30.

Wood, R. K. 1993. Deterministic network interdiction. Math. Com-
put. Model. 17 1–18.

